INTRODUCTION

The Arizona Bureau of Mines, being the principal State agency that assembles and distributes basic geologic information to Arizona residents, is interested in the ramifying relationships between Society, the geologic condition, and "land use". "Land use" is an infinitely complex subject and most likely will provide a focus for future articles in FIELDNOTES. For this report we are introducing the subject of geologic hazards in the Tucson region, with emphasis on general conditions that should warrant consideration when choosing a residential setting.

A "hazard" is a special condition that threatens damage to life and/or property. The "geologic condition" includes the physical-chemical characteristics of the earth as well as its processes. The geologic condition might or might not be a threat to man because it is the local geologic setting that controls the kinds and magnitudes of the active processes. Earthquakes (faulting), volcanic activity, water movement, landslides, mudflows, land subsidence, rock falls, etc., are processes that operate unequally around the earth. Each locality or community has its own sets of conditions that can be evaluated for hazardous or threatening characteristics. It is a wise man or animal that renders more than a cursory evaluation before settling down in one place for an extended stay.

Construction and destruction are judgmental words because, when viewed in the larger context, natural processes are, in the long run, constructive. They are nature's way of balancing forces; they are mechanisms to restore equilibrium to a complex system of action and reaction. The evolution of the surface of the earth is incessant, unrelenting, and guaranteed to continue for a time. The biosphere is the newcomer and is required to adapt in order to survive. Adaptation means playing by the rules of the game and learning these rules is experience. Tragedy is commonplace among those who do not or cannot heed the collective experience. At this point, we are not concerned with "Acts of God" but rather the predictable, the repetitive, the avoidable.
local planners and decision-makers with data heretofore unavailable. The existence of such data will be of great assistance in analyzing effectively the alternatives in land use and in evaluating the tradeoffs between resource development and environmental protection concerns.

ANNOUNCEMENT

Arizona Bureau of Mines Bulletin No. 185 entitled ARIZONA WELL INFORMATION is expected to become available by the end of September, 1972. This publication was assembled by Dr. H. Wesley Peirce of the Arizona Bureau of Mines and James R. Scurlock of the Arizona Oil and Gas Conservation Commission. It records both geologic and engineering data from oil, natural gas, helium and various mineral exploration tests drilled in Arizona through 1971. The geologic data includes depths to the tops of widely recognized stratigraphic units. Information about 735 wells is recorded on 195 pages.

GEOLOGIC HAZARDS AND LAND-USE PLANNING

The following treatment is very general and incomplete. The examples largely are restricted to the Tucson region because of ready access. It is hoped that this brief venture into "geologic hazards" will stimulate some awareness so that when more persons will be encouraged to make use of their own powers of observation. Adequate management of our conduct in the environment in which we live requires, besides money, interest, wisdom, and knowledge as well.

TUCSON AREA

The Tucson metropolitan area occupies the Tucson Basin, a valley surrounded by mountain masses. The basin is within the Colorado River drainage system which means that all surface drainage is connected by an integrated network that terminates at the Gulf of California below Yuma. The valley is drained by intermittent drainages, the: (1) Santa Cruz River to the west flows to the north from Mexico, (2) Pantano Wash to the east flows northwest from near Vail, (3) Tanque Verde Wash to the east flows west to a junction with Pantano Wash to become Rillito Creek that, in turn, flows north-northwest along the junction of the main valley with the foothills of the Catalina Mountains. Numerous washes transect the foothills, some draining large canyons incised sharply into the bedrock of the Catalina-Tanque Verde-Rincon mountain block (Fig. 1).

This mountain block reaches an elevation in excess of 9,000 feet above sea level (over 6,000 feet above the valley floor), is over 40 miles in length, and averages 15 miles in width. Anyone who has seen its winter snow pack reach a depth of over twenty feet (1967-68), or the beautiful cumulus cloud buildup in the summer, should recognize that this mass has the potential to transfer large volumes of water to the valleys below.

An assessment of the Tucson geologic setting suggests that the most hazardous of the operating geologic processes is related to water movement along canyons, washes, and rivers (also city streets!). Rockfall near the mountain margins is a likely hazard for some (more in the future). Differential subsidence of the Tucson Basin might constitute an approaching property hazard if it is not already a factor in the extensive cracking of residences.

DRAINAGE HAZARDS

At the outset, it is necessary to recall that the large drainages in the Tucson area are unfettered by dams or other means to capture and distribute periodic and erratic flow—they are, largely, as nature made them. Normally dry, the experienced will recognize that they can be, at unpredictable times, raging torrents. Churning, debris laden waters rip into and chew away soft banks wherever the water is forced by confining banks to change its direction. A moving object or substance tends to continue in a straight line and will do so if...
Floodplain (lowlands) — Development

PLATE 1

A

B

C

D

E

F
unrestrained. Thus, channel migration at unreinforced turns is a process as relentless as an oncoming bulldozer. It is this latter process that does so much violence to man-made features. It is to be emphasized that this destructive (only if man is in the way) potential operates whenever there is enough water to erode banks. It does not require overbank (flooding) flow, therefore occurs more often than flooding because of decreased flow requirements.

As the basin population increases, encroachment into the domains of these drainages increases. The larger drainages (Santa Cruz, Pantano Wash, Rillito Creek, and Tanque Verde Wash) have created extensive relatively flat surface features, the floodplains, adjacent to main channels (Plate 1). Floodplains are depositional in origin and result from slack water sedimentation at times of overbank flow. They are absolute testimony of high water activity independent of the records kept by man. An important aspect of a floodplain is that it constitutes the playground of the main channel. Floodplains are easily recognized, therefore readily mappable. There should be little excuse for anyone living on such a feature without knowing it. Perhaps the degree of risk is thought to be so minimal that it isn’t worth a worry. On the other hand, it is likely that many occupants of high density developments on floodplains do not recognize the fact because of poor perspective (can’t see the forest for the trees). All of Tucson’s major drainages have living floodplains; that is, they are subject to flooding during unusually high water stages. However, as emphasized here, they are subject to severe erosional destruction at lesser water stages. Living floodplains should not constitute a place for lengthy investment in permanent habitation for the disreput! The magnitude of possible damage to property on floodplains is a function of: (1) volume of water in transit, (2) the duration of flow, and (3) position on the floodplain relative to the dynamics of main channel erosion. Points one and two are variable and unpredictable. Runoff in the basin results from a variety of possible climatological conditions. Contrary to popular belief, the normal summer storm, though locally severe, is not usually of sufficient duration and extent to cause widespread filling of main channels for any length of time. The heaviest flows have been in September in response to tropical storms and during the winter-spring snow melt season. The summer cloud burst, if placed in a strategic spot, can effect much damage, especially to dwellers of lowlands associated with washes fed by large canyons incised into the high mountain blocks. Too, damage is done within the city by locally heavy downpours. Runoff rates are increased by continued development so that present accommodations might not satisfy future drainage requirements.

It has become popular to talk of the 50 or 100-year floodplain. This involves a statistical concept that attempts to delineate those areas in a floodplain system that might be flooded once in fifty or one hundred years. Flow records have not been kept for one hundred years; therefore, actual records are not in hand. It is necessary to make many assumptions in order to arrive at some idea as to flood possibilities over a long time span. Can anyone predict when a 100, 200 or 1000-year, etc., hydrological event will baptize the Tucson area, or what it will be like? The answer is no! Again, anyone interested in protecting an investment in land and housing for one or two generations should be shy of floodplains, or lowlands in general. An axiom just as sound for homeowners as it is for soaring pilots suggests that it is well to “get high and stay high!”

Plates I and 2 are designed to emphasize the fact that development in the Tucson area does take place on various lowlands, including floodplains. Pictures B, C, D and E of Plate 1 are examples of floodplain living. Pictures I C and E show developments, portions of which appear vulnerable to floodplain destruction by progressive bank erosion. (See dashed lines.) The C development is located outside of the projected 100-year flood zone, according to the local office of the U. S. Geological Survey, Groundwater Branch, whereas the E area is included within such a zone. However, both are vulnerable to eventual erosion damage as contrasted with flooding, whereas C before E, the opposite of the flooding potential! The bridge in C is an example of spanning a channel and not the floodplain.

Pictures B, D and E of Plate 2 and picture D of Plate 4 are examples of habitation along lowlands associated with tributary washes in the Catalina foothills that connect the mountain block with the axial stream (Rillito Creek) that drains the northern part of the valley. Plate 2A shows an earth dam in a wash below which houses have been placed at or near the wash bottom as shown in 2B. All the canyon drainages shown in 2C eventually coalesce to pass through the low points shown in 2 D and E (See caption for 2E).

ROCK FALLS

As population increase tends to fill out the living area, encroachment along the bedrock front of the Catalina and other mountains is taking place. The often rugged topography at mountain-valley interfaces presents hazards of a different type—moving (falling-rolling) rocks and/or water. Plate 3 depicts dwellings within the zone along which boulder migration has occurred before. The frontal cliffs of the Catalinas continue to evolve, largely by failure along a fraction system that traverses these rocks. Is the past a key to what might happen in the future? To a geologist, the answer is, “yes!” See the more detailed explanations that go with Plate 3, A, B and C.

EARTH CRACKING AND MISCELLANEA

Plate 4 contains examples of miscellaneous phenomena. Picture 4A is a portion of the earth fissure (crack) system along the west side of the Pichacho Mountain in Pinal County. Interstate 10 east of Eloy is intersected by this system. Both the highway and the paralleling railroad require periodic maintenance where this fracture crosses each. These are believed to be subsidence cracks and are often attributed to groundwater withdrawal in the extensive agricultural area to the west. Measurements indicate ground level subsidence of as much as seven (7) feet near Eloy. Extensive cracking has been noted elsewhere in Arizona. In one case, cracking has occurred near a housing development.

Again, as Arizona grows and population spreads out, it is likely that fissuring of this sort will overlap with construction projects. It is probable that new fissuring will occur in areas of large volume pumpage of groundwater where the subsurface conditions are favorable for their development. “Land use” studies would be deficient if they did not address the question of subsidence causes and effects. Houses and other structures in the Tucson area crack with regularity.

PLATE 2

Wash (lowlands) Development - Catalina foothills.

A. Earth dam on wash in Catalina foothills.
B. Development in wash lowland half mile below dam. Arrow points to wash bottom.
C. South face of Catalinas. Entire visible area drains into one wash (see 2E and F. and also Fig. 1). Finger Rock (arrow) is at left skyline. Finger Rock canyon is below. Looking north.
D. House in Finger Rock wash lowland. Boulders are easily accessible because of position in the zone of high energy flow along wash. Looking west.
E. Finger Rock wash lowlands development. Note also hidden roof top at center. The Finger Rock drainage is deceptive because the canyon mouth is just off the left edge of the picture. From there the drainage hooks back to the east before flowing south to the Rillito (see Fig. 1). Looking northwest.
Wash (lowlands) Development — Catalina Foothills

PLATE 2

A

B

C

D

E
Mountain Fronts and Boulders (A,B,C)

Urban Drainage (D,E,F)
but absolute causes largely are not yet documented. All of Tucson’s water supply is groundwater; therefore, the question of possible subsidence effects must be raised. To the best of our knowledge, there isn’t a survey program in the Tucson region designed to monitor detailed changes in land surface elevations. Land level adjustments might be taking place in areas of principal pumpage near the major waterways but we will not know for sure until a systematic surveying program is set up and adequately financed and maintained. Residents of Tucson and elsewhere have a need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.

Pictures 4B and C illustrate a land development project in which a network of dirt roads is intertwined with a complex of washes. It would appear that a creditable attempt was made to construct many interior roads parallel to wash trends so as to avoid the maintenance costs associated with numerous wash crossings. Picture 4C shows what happens when roads are built “against the grain” and not properly protected. Buyers of acreage in raw developments should consider the stability of ingress and egress routes, and wonder who ultimately will bear the responsibility for proper road maintenance and its associated costs.

Picture 4F is a culvert that passes drainage from Pima Wash (4D) beneath Ina Road. Pima Wash drains Pima Canyon in the Catalinas (Fig. 1). Although this crossing is apparently calculated to wash out occasionally, the tendency is for restrictions such as culverts to become fouled and plugged with debris. As can be seen, a debris buildup has already started. If allowed to continue, the culvert might become prematurely plugged and Ina Road topped and washed out sooner than may have been calculated. Picture 4E is a smaller, scale example of what can happen.

The handling of urban drainage is a difficult and costly matter. Overall planning is made difficult by uneven development in both time and space. Tampering with the natural system leads to a long chain of reaction effects—the solving of a local situation creates new situations elsewhere (This is a repetitious story in the natural world!). Pictures 3D, E, and F are in the urbanized setting. They illustrate interference with a natural drainage (D), the creation of an artificial channel (E) and how an unappreciated side drainage compromises the handling of a major wash at a street crossing (Glenn east of Swan-Alamo Wash).

CONCLUSIONS

These few examples of living with potentially and actually hazardous as well as nuisance conditions can be multiplied many times within the Tucson metropolitan region. Many of them represent a flirtation with forceful natural processes that have been active in recent times and that again will be active in the future. The valley population will need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.

Pictures 4B and C illustrate a land development project in which a network of dirt roads is intertwined with a complex of washes. It would appear that a creditable attempt was made to construct many interior roads parallel to wash trends so as to avoid the maintenance costs associated with numerous wash crossings. Picture 4C shows what happens when roads are built “against the grain” and not properly protected. Buyers of acreage in raw developments should consider the stability of ingress and egress routes, and wonder who ultimately will bear the responsibility for proper road maintenance and its associated costs.

Picture 4F is a culvert that passes drainage from Pima Wash (4D) beneath Ina Road. Pima Wash drains Pima Canyon in the Catalinas (Fig. 1). Although this crossing is apparently calculated to wash out occasionally, the tendency is for restrictions such as culverts to become fouled and plugged with debris. As can be seen, a debris buildup has already started. If allowed to continue, the culvert might become prematurely plugged and Ina Road topped and washed out sooner than may have been calculated. Picture 4E is a smaller, scale example of what can happen.

The handling of urban drainage is a difficult and costly matter. Overall planning is made difficult by uneven development in both time and space. Tampering with the natural system leads to a long chain of reaction effects—the solving of a local situation creates new situations elsewhere (This is a repetitious story in the natural world!). Pictures 3D, E, and F are in the urbanized setting. They illustrate interference with a natural drainage (D), the creation of an artificial channel (E) and how an unappreciated side drainage compromises the handling of a major wash at a street crossing (Glenn east of Swan-Alamo Wash).

CONCLUSIONS

These few examples of living with potentially and actually hazardous as well as nuisance conditions can be multiplied many times within the Tucson metropolitan region. Many of them represent a flirtation with forceful natural processes that have been active in recent times and that again will be active in the future. The valley population will need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.

Pictures 4B and C illustrate a land development project in which a network of dirt roads is intertwined with a complex of washes. It would appear that a creditable attempt was made to construct many interior roads parallel to wash trends so as to avoid the maintenance costs associated with numerous wash crossings. Picture 4C shows what happens when roads are built “against the grain” and not properly protected. Buyers of acreage in raw developments should consider the stability of ingress and egress routes, and wonder who ultimately will bear the responsibility for proper road maintenance and its associated costs.

Picture 4F is a culvert that passes drainage from Pima Wash (4D) beneath Ina Road. Pima Wash drains Pima Canyon in the Catalinas (Fig. 1). Although this crossing is apparently calculated to wash out occasionally, the tendency is for restrictions such as culverts to become fouled and plugged with debris. As can be seen, a debris buildup has already started. If allowed to continue, the culvert might become prematurely plugged and Ina Road topped and washed out sooner than may have been calculated. Picture 4E is a smaller, scale example of what can happen.

The handling of urban drainage is a difficult and costly matter. Overall planning is made difficult by uneven development in both time and space. Tampering with the natural system leads to a long chain of reaction effects—the solving of a local situation creates new situations elsewhere (This is a repetitious story in the natural world!). Pictures 3D, E, and F are in the urbanized setting. They illustrate interference with a natural drainage (D), the creation of an artificial channel (E) and how an unappreciated side drainage compromises the handling of a major wash at a street crossing (Glenn east of Swan-Alamo Wash).

CONCLUSIONS

These few examples of living with potentially and actually hazardous as well as nuisance conditions can be multiplied many times within the Tucson metropolitan region. Many of them represent a flirtation with forceful natural processes that have been active in recent times and that again will be active in the future. The valley population will need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.

Pictures 4B and C illustrate a land development project in which a network of dirt roads is intertwined with a complex of washes. It would appear that a creditable attempt was made to construct many interior roads parallel to wash trends so as to avoid the maintenance costs associated with numerous wash crossings. Picture 4C shows what happens when roads are built “against the grain” and not properly protected. Buyers of acreage in raw developments should consider the stability of ingress and egress routes, and wonder who ultimately will bear the responsibility for proper road maintenance and its associated costs.

Picture 4F is a culvert that passes drainage from Pima Wash (4D) beneath Ina Road. Pima Wash drains Pima Canyon in the Catalinas (Fig. 1). Although this crossing is apparently calculated to wash out occasionally, the tendency is for restrictions such as culverts to become fouled and plugged with debris. As can be seen, a debris buildup has already started. If allowed to continue, the culvert might become prematurely plugged and Ina Road topped and washed out sooner than may have been calculated. Picture 4E is a smaller, scale example of what can happen.

The handling of urban drainage is a difficult and costly matter. Overall planning is made difficult by uneven development in both time and space. Tampering with the natural system leads to a long chain of reaction effects—the solving of a local situation creates new situations elsewhere (This is a repetitious story in the natural world!). Pictures 3D, E, and F are in the urbanized setting. They illustrate interference with a natural drainage (D), the creation of an artificial channel (E) and how an unappreciated side drainage compromises the handling of a major wash at a street crossing (Glenn east of Swan-Alamo Wash).

CONCLUSIONS

These few examples of living with potentially and actually hazardous as well as nuisance conditions can be multiplied many times within the Tucson metropolitan region. Many of them represent a flirtation with forceful natural processes that have been active in recent times and that again will be active in the future. The valley population will need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.

Pictures 4B and C illustrate a land development project in which a network of dirt roads is intertwined with a complex of washes. It would appear that a creditable attempt was made to construct many interior roads parallel to wash trends so as to avoid the maintenance costs associated with numerous wash crossings. Picture 4C shows what happens when roads are built “against the grain” and not properly protected. Buyers of acreage in raw developments should consider the stability of ingress and egress routes, and wonder who ultimately will bear the responsibility for proper road maintenance and its associated costs.

Picture 4F is a culvert that passes drainage from Pima Wash (4D) beneath Ina Road. Pima Wash drains Pima Canyon in the Catalinas (Fig. 1). Although this crossing is apparently calculated to wash out occasionally, the tendency is for restrictions such as culverts to become fouled and plugged with debris. As can be seen, a debris buildup has already started. If allowed to continue, the culvert might become prematurely plugged and Ina Road topped and washed out sooner than may have been calculated. Picture 4E is a smaller, scale example of what can happen.

The handling of urban drainage is a difficult and costly matter. Overall planning is made difficult by uneven development in both time and space. Tampering with the natural system leads to a long chain of reaction effects—the solving of a local situation creates new situations elsewhere (This is a repetitious story in the natural world!). Pictures 3D, E, and F are in the urbanized setting. They illustrate interference with a natural drainage (D), the creation of an artificial channel (E) and how an unappreciated side drainage compromises the handling of a major wash at a street crossing (Glenn east of Swan-Alamo Wash).

CONCLUSIONS

These few examples of living with potentially and actually hazardous as well as nuisance conditions can be multiplied many times within the Tucson metropolitan region. Many of them represent a flirtation with forceful natural processes that have been active in recent times and that again will be active in the future. The valley population will need to know what is going on, and so do the people who must design and build in this setting. It is this writer’s personal suspicion that some of the settling attributed to local watering habits, especially on the older soils, is actually subsidence adjustment associated with water table decline. If so, the problem is not likely to diminish, but to increase with time.
GEologic HAZARDS Continued

continue to grow, which means that "hazardous" acreage will tend to be pressured into development. The responsibility for picking and choosing building sites is left to the discretion of individuals as laws regarding lowland development are apparently nonexistent. In the absence of protective zoning laws, it is essential that individuals become aware of the hazards that do exist, and that they can be minimized by proper sensitivity and selectivity.

Contrasting philosophies exist regarding floodplain management. Much riverbottom and floodplain property is privately held, which complicates overall management. Development leads to demands for protection after the problem is belatedly perceived. In these times of environmental awareness, it might be possible to find merit in the discouragement of development along lowlands and to open these lands to recreational pursuits. For some, it would be an asset to develop drainage easements that would allow the public to move without encountering barbed wire fences in river and wash bottoms, etc. Too, there might be merit in protecting future sources of that which is so vital to all communities—sand and gravel (especially gravel) for construction purposes. "Planning" and "Land use" are terms that have become commonplace. Neither wisdom and the knowledge to do it well.

PLATE 4

The surge in power demand for air conditioning has required increased production of gas, oil, coal, and uranium. Heating and lighting have improved so much in recent years that we take them for granted. Such factors, important to health and vital comfort, depend on metals and fuels supplied by the mining industry. Other activities such as Man's use of his leisure hours and the exploration of space depend on minerals produced from the earth.

THE U.S. NEEDS A HEALTHY MINING INDUSTRY

Most people know very little about the mining industry because mining employs only 0.9 percent of the U.S. working force, occupies less than 0.3 percent of the surface area of this country (primarily in remote areas), and produces only 3 percent of the Gross National Product. Further, few mined products are purchased or used by the public in a form that can be identified with mining.

Though mining may not appear to be a giant industry the living standards in the United States today are based on its minerals. With only 5 percent of the world's population and 7 percent of the land area, we use 30 percent of the world's mineral production and must import varying amounts of many mineral products. Changing competition for world mineral supplies dictates we can no longer assume that foreign mineral products will flow to our nation as freely as they have in the past. The United States must build up a stronger domestic mining industry at home. This can be done only if people outside the mining industry understand how vital minerals are to their existence.

The fuel, metals, and nonmetals produced in the United States have a direct impact on 40 percent of the economy and an indirect impact on an additional 35 percent. No nation can enjoy prosperity without a reliable source of minerals which, in turn, supports its industries. Further, it is evident that metals are vital to national security. Minerals are like money in the bank—without them a nation will decay and its people face a more austere, lower standard of living.

HOW MUCH DO WE USE – HOW MUCH DO WE NEED

The U.S. Bureau of Mines and the U.S. Geological Survey keep records on how much we use and how much we will need in the future, and make estimations of current reserves. An abbreviated listing of U.S. mineral production follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Metals</th>
<th>Nonmetals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>0.8</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>1950</td>
<td>1.4</td>
<td>1.8</td>
<td>3.2</td>
</tr>
<tr>
<td>1960</td>
<td>2.0</td>
<td>3.9</td>
<td>5.9</td>
</tr>
<tr>
<td>1970</td>
<td>3.9</td>
<td>5.7</td>
<td>9.6</td>
</tr>
<tr>
<td>2000</td>
<td>16.0</td>
<td>24.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

These numbers do not include materials recovered from scrap (secondary) or imported materials. In the future large quantities of materials from secondary sources will have to be produced. With any lesser amount than the total quantity estimated for the year 2000, the standard of living of the nation would decline seriously.

A large portion of the minerals of the future are yet to be discovered. The brief listing in this booklet of some of the metals or minerals and their common uses does not really convey the scope of the contribution that metals and mineral products make to everyday life, nor their significance.

However, at least two important dimensions are missing: first, the incalculable scope of human inventiveness for which these minerals provide raw material and second, the enormous changes in the character and quality of life that minerals have wrought under...